Environment

By Andrew Hoffman
The Oredigger

Members of the Engineers Without Borders / Bridges to Prosperity (EWB/B2P) student organization at the Colorado School of Mines recently traveled to Nicaragua to complete a social survey for a community development project. The team of five included four students: Ethan Faber, Eric Rosing, Ashley Lessig, and Jeremy Beard as well as professional mentor Stephanie Fleckenstein. Over the course of the survey trip the team spent their spring break collecting information about a group of four rural communities in the Carazo region of Nicaragua. The main goals were to collect information about development needs in the communities and identify what opportunities they saw for themselves. The Los Gomez area communities were the site of a pedestrian bridge construction project which was completed by the community members and EWB/B2P students at Mines in May, 2013.

A central focus of the organization is to help foster sustainable development by building a lasting relationship with communities. Additionally, the students work closely with the community members in developing feasible projects. It is critical that the community owns the project however. In this way Mines students are able to use their technical training to help implement a project that is truly needed and which will be maintained long after the students have left.

In this current project, which is still in its initial stage, the travel team helped identify a list of the most prominent issues the communities face such as access to a reliable water supply and to health services. Faber mentions that such trips really help open your eyes to the scale of poverty in the US versus developing countries. Lack of basic engineering infrastructure, such as primary schools without clean water, are virtually unheard of here, but in the Los Gomez communities it is a fact of daily life. For American college students, the opportunity to help such communities develop their own solutions to their problems is rewarding both as real-world engineering experience and also for personal improvement. An interesting thing happens when you see families and even young children coping with such severe life problems and yet appear to be fundamentally happy, Faber muses. "You can learn a lot from these people, and it really puts your own life and daily problems in perspective." A project can really be considered a success when both groups in an international development project come out having gained something and also having new lifelong connections.

The team had a great time and got a lot of crucial social data over their trip. They are continuing communication with the communities and identifying next steps for the project. As the project becomes defined the group will create a master plan document which will guide what actions need to be taken to realize the final goal.

The club is made up of a wide range of students. All majors and fields of study have something to contribute regardless of the type of engineering project. Knowing Spanish is an excellent asset but not at all required for group members. The travel team recalls that a main highlight of the trip was hanging out with the community after a day's work collecting data. A lot can be shared even without words. The important thing is making the connection to develop a working relationship. Lessig recalls that she particularly enjoyed getting to play and interact with the kids.

EWB/B2P Mines would like to thank donors Alcoa, CH2MHill, Schlumberger, and Shell who sponsor travel and material expenses for current projects, and also to Bridges to Prosperity for all their work in the past and current bridge projects.

Are you interested in joining? The club has two current projects: a second bridge construction and the new Los Gomez project. EWB/B2P has committee meetings Mondays at 6:00 PM (MZ 322), Tuesday at 5:00 (MZ 335), and Wednesday and Thursday at 5:00 (both in MZ 322). Also, the club is having a silent auction lunch benefit pig roast on Saturday, April 19 from noon to 2:00. Both are great ways to learn about the club and have fun. For more information see our website (just search "EWB Mines").

 

This interview originally appeared in the April 13, 2014, issue of The Oredigger.

Colorado School of Mines will compete against nine other schools at the National Collegiate Wind Competition in May in Las Vegas. Teams will be showcasing a lightweight, transportable wind turbine that could power small electronic devices. Each team’s prototype wind turbine will be tested in a wind tunnel and scored for performance, operational safety, component durability and system reliability.

Nine students on the Mines team, Zephyrus, are in the process of using design prototypes to build the final turbine.

Competition advisor Cameron Turner said the team has taken an innovative path in the competition by establishing a supporting business plan and developing an understanding of wind power political issues, in addition to, creating a technical solution to their design.

“In many ways, they are demonstrating not only technical competence, but also personal competence as citizens,” Cameron Turner said. “In two months, they will be presenting their work at the American Wind Energy Association meeting alongside nine other schools. I fully expect that the team will be amongst the best teams at the competition.”

Mines will be competing against Boise State University, California Maritime Academy, James Madison University, Kansas State University, Northern Arizona University, Pennsylvania State University, University of Alaska Fairbanks, University of Kansas and University of Massachusetts Lowell.

Visit the Zephyrus website and competition website for more information.

 

Contact:

Kathleen Morton, Communications Coordinator / 303-273-3088 / KMorton@mines.edu
Karen Gilbert, Director of Public Relations / 303-273-3541 / KGilbert@mines.edu

The Feb. 27-28 Conference on Earth & Energy Research gave graduate students the opportunity to practice presenting their research in a professional environment, while judges provided feedback. Last year, two undergraduates showcased their work, but this year, that number rose to nine.

“I’m very happy about the turnout,” Graduate Student Government Academic Chair John Bristow said. “In the past, they’ve been very grad-centered.”

Two speakers presented keynote speeches between students’ poster and oral sessions.

Ken Salazar, former Secretary of the U.S. Department of the Interior and U.S. Senator from Colorado, delivered the opening keynote address on North American energy independence. Salazar told stories of the BP oil spill in 2010 and shared conversations with President Barack Obama two years after the disaster.

Dr. Pieter Tans, Senior Scientist and Earth System Research Laboratory at NOAA, closed the conference with “Climate Change: Man Made Climate Change and Energy Policy.” Tans shared his research on measuring carbon dioxide and other gases in the atmosphere, detailing some of the causes of these increases and what this means for our future.

2014 research competition winners:

  • Overall 1st: Tara Pandey
  • Overall 2nd: Susana Guzman
  • Overall Poster: Tara Yoder
  • Overal Oral: Pascale Meysing
  • Overall Off-campus: Vishal Nangla (U Wyo)
  • Undergraduate: Sarah Rommelfanger
  • Chemical and Biological Engineering: Nicholas Rorrer
  • Chemical and GeoChemistry: Jacqueline Cloud
  • Economics and Business: Ben Johnson
  • Geological Engineering: Joshua Day
  • Geophysics: Joyce Hoopes
  • Hydrology: Rachel Feist
  • Liberal Arts and International Studies: Nathaniel Mauger
  • Materials Science: Alyaa Elramady
  • Mechanical Engineering: Brandon Blakeley
  • Metallurgical and Materials Engineering: Stephanie Miller
  • Petroleum Engineering: Taylor Patterson
  • Physics: Lauryn Baranowski
  • Applied Mathematics and Statistics: Brian Zaharatos
  • Mining Engineering: Yu Koizumi
  • Nuclear Engineering: Michael Servis
  • Civil and Environmental Engineering: Kerri Hickenbottom
  • Electrical Engineering and Computer Science: Craig Champlin

More information can be found at ceerconference.org.

 

Contact:

Kathleen Morton, Communications Coordinator / 303-273-3088 / KMorton@mines.edu
Karen Gilbert, Director of Public Relations / 303-273-3541 / KGilbert@mines.edu

This article is part of a series on the undergraduate research fellowship program

Engineering physics junior Steven Hackenburg is working with physics professor Dr. Lawrence Wiencke on programming that remotely controls the laser systems at the Pierre Auger Observatory, located in Argentina. Hackenburg studies cosmic rays, high-energy particles, mainly originating outside the Solar System, as part of his undergraduate research fellowship.

“Relatively speaking, we understand light and its properties quite well, and we use it to learn about the universe, from confirming Einstein’s theories concerning gravity, to discovering the composition of planets,” Hackenburg said. “On the other hand however we know little about cosmic rays compared to our understanding of light.”

Hackenburg fires laser shots into the sky in directions where potential sources of cosmic rays are believed to exist. He uses the fluorescence detector to study the tracks in the sky created from the laser. The data from the laser tracks are used to verify that the fluorescence detector is measuring the directions of the rare cosmic ray tracks properly.

Hackenburg said he has always been interested in the mysteries of space and the universe.

“It's amazing for me to think about how little of the universe we have been able to explore in any depth compared to the size of the universe or even our own galaxy,” Hackenburg said. “Also, think about how we get the information about the universe; we observe it. We, as scientists, look to the stars for answers.”

In early 2013, research analyzing data from Fermi revealed that supernovae were a source of cosmic rays. However, supernovae do not produce all cosmic rays, and the proportion of cosmic rays that they do produce is a question which cannot be answered without further study.

“The sources of these particles remain an important question, coming from somewhere outside our galaxy. They are very rare,” Wiencke said. “At the highest energies (10^20 eV), the flux is something less than one square mile per century.”

Weincke and Hackenburg generate many tracks with the laser systems every night of operation.

“This data is used to demonstrate that the observatory is working properly and ready for the monster cosmic events when they occur,” Wiencke said.

Applied physics graduate student Carlos Medina helped with the construction, system integration and testing of the Central Raman Laser Facility in Argentina. He collects data from the CRLF that he is analyzing for his PHD thesis in astrophysics.

“I am happy to have the opportunity to study and analyze data that will help us better understand our universe,” Medina said.

Undergraduate research fellowships are administered by the research council. Students can apply for a fellowship to work on a project with a faculty member.

 

Contact:

Kathleen Morton, Communications Coordinator / 303-273-3088 / KMorton@mines.edu

Karen Gilbert, Director of Public Relations / 303-273-3541 / KGilbert@mines.edu

This story appears in the Fall/Winter 2013 issue of Mines magazine.

Seven years into his presidency, with plenty of milestones on record, a capital campaign in full swing, and some big changes on the horizon for Mines, we recently sat down with President Scoggins for an informal Q&A. Partly retrospection, partly introspection and partly forward-looking, the conversation that follows will be of interest to all those who support the growth and success of Mines, and are curious to learn more about its president.

Mines: Nearly seven years ago, you transitioned from the corporate world to academia. What motivated your decision?

Scoggins: Not too long before I retired after more than 35 years in the oil and gas industry, I joined the board of trustees of my alma mater, the University of Tulsa. After I retired, I became increasingly active, serving on the executive committee and spending a great deal of time on campus. My wife and I both enjoyed the experience of being involved in the university. When I received the call from Mines asking me to consider being a candidate, I realized this was an opportunity to be part of a remarkable community.

Mines: What aspects of leading Mines do you find most rewarding?

Scoggins: The most rewarding moments revolve around students—seeing them be successful. I’m getting ready to participate in my 15th commencement, so I have had the opportunity to watch many wonderful students walk confidently across the stage, proud of their accomplishment, and poised to make great contributions to society. It’s very special to be a part of that.

I recently heard about an alumnus who is about to graduate from the University of Texas with master’s degrees in environmental engineering and public policy. At Mines, he was a lineman on the football team, and we got to know each other a little. Whenever he saw me on campus, he’d ask, “You gonna come to the game this weekend?” At his graduation, just before I handed him his diploma, I called out his jersey number and said, “James Tyree, #65, you did a hell of a job.” I got the biggest bear hug I think any president’s ever gotten during a college graduation ceremony.

Karen and I try to attend as many student activities as possible—from athletic events to plays and concerts—and we enjoy them all. I particularly enjoy the graduate research conference and looking at the students’ posters, even though I have to admit I really don’t understand all of them.

Really, the most rewarding aspect of my job is seeing the growth in our students over their time at Mines, which is a testament to their own hard work and to the dedication of the Mines faculty and staff who teach and interact with them.

Mines: When you speak to individuals or groups less familiar with the university, how do you make “the case for Mines”? What does the university have to offer that sets it apart?

Scoggins: I talk about the focused nature of the school’s mission, the quality of the education our students receive, and the relevance of our research programs. Mines is uniquely positioned to deal with global challenges related to our focus areas of earth, energy and environment. These issues are at the forefront of the world’s most pressing concerns, and Mines is playing a critical role in educating students who will be leaders in addressing them—through their careers and through meaningful research.

I also always point out something you will hear from almost every Mines alum—and that I completely agree with—which is that our students develop a work ethic unlike almost any other university. By the time they graduate, our students truly have the skills to hit the ground running. They are a very special group.

Mines: The financial crisis erupted relatively early in your presidency. This must have posed some significant challenges.

Scoggins: When I interviewed for the position, the board of trustees indicated they wanted a lot of focus on the school’s financial condition. When I arrived, Mines was already in the process of putting together the all-funds budget. We tightened down our systems, controlled our costs and planned carefully. As a result, we have managed to weather some major cutbacks in state funding. We faced some financial challenges, but the school came through it with minimal adverse impacts...

Read the rest of the story on the Mines magazine website.

Environmental science and engineering graduate student Erin Neil is working on an independent study with civil and environmental engineering professors Dr. Tzahi Cath and Dr. Pei Xu on developing cost-effective and environmentally sound technologies to increase the quality of water from water waste.

“We are trying to use waste streams from one water treatment process to treat another stream that might be used beneficially,” Cath said.

Neil is comparing the removal efficiencies of different types of sludge and evaluating the potential for microbiological contaminants to leach from the sludge to the treated water. The group has collected samples from Golden Drinking Water Treatment Plant, El Paso Water Utilities and other drinking water treatment plants. Neil uses the EPA Membrane Filtration Method to test fluid samples for microbiological contamination.

“We have seen promising adsorption results and expect to better understand the feasibility of re-using this water,” Neil said.

The project is part of a large effort with The National Science Foundation Engineering Research Center Program, ReNUWit Engineering Research Center. It is part of a collaborative study among Mines, New Mexico State University and the industrial partner, El Paso Water Utilities.

The researchers use sludge from drinking water treatment plants to treat reverse osmosis (RO) waste. RO waste is made of concentrated brine, which contains minerals, organics and metals that are rejected by the RO membranes. Treating this concentrate could provide additional water supplies to the public, and reduce the environmental impacts from discharging concentrate laden with salt and toxic heavy metals.

“Treatment of reverse osmosis concentrate can convert the waste stream to additional water for beneficial use, such as irrigation, that is otherwise scarce in arid climates,” Xu said. “Removal of toxic contaminants from RO concentrate will allow beneficial use of the water and protection of environment.”

Although several disposal methods are available, they can be associated with high processing costs, constrained by permitting, environmental impacts and other limitations.

“It can be a challenge with respect to regulations that surround deep well injection,” Neil said. “It can be expensive to dispose of that concentrate.”

 

Contact:

Kathleen Morton, Communications Coordinator / 303-273-3088 / KMorton@mines.edu

Karen Gilbert, Director of Public Relations / 303-273-3541 / KGilbert@mines.edu

Researchers at Colorado School of Mines took delivery of the world’s first Geothermic Fuel Cell (GFC) on Aug. 5, 2013. 

Designed and built by Delphi, headquartered in Rochester, NY, for IEP Technology, of Parker, Colo., the GFC will efficiently generate 4.5 kW of electricity from natural gas fuel. 

Its real value lies in the heat that it liberates while generating this electricity -- scientists and engineers seek to harness this heat to recover unconventional oil. This electricity comes as a useful and valuable byproduct of the oil-recovery process. 

In partnership with IEP Technology and Delphi, students, engineers, and faculty will characterize the thermal and electrical performance of the geothermic fuel cell at the Colorado Fuel Cell Center laboratory on the Mines campus. 

The solid-oxide fuel cells packaged within the GFC operate at high temperature (nearly 750 ºC) to convert natural gas into electricity and heat. When implemented, clusters of GFCs will be placed into the earth within oil shale formations for oil recovery. GFCs present a potentially transformative technology for accessing the world’s vast oil-shale reserves, which are estimated at 4.8 trillion barrels worldwide, in an environmentally responsible manner.

“This privately funded research and development project leverages the past investments in infrastructure made by Colorado School of Mines and federal agencies in the Colorado Fuel Cell Center. Such university-industrial partnerships are common at Mines, and create unique learning experiences for both our students and faculty, while answering important questions facing our industrial partners in bringing such technologies to market,” said Dr. Neal Sullivan, Mines associate professor of mechanical engineering.

To learn more about geothermic fuel cells, visit the IEP Technologies website: http://www.iepm.com/

Learn more about the Colorado Fuel Cell Center at www.coloradofuelcellcenter.org.

 

In the center of a clear plastic tub, small rocks formed a mound. With sixth graders gathered around the tub, Lyndsey Wright poured cool water over the rock mound. Next she poked small holes in a paper cup, put some blue food coloring in the bottom, and set the cup in the corner of the tub. Quickly she poured hot water into the cup. And the students observed. Then they got their own tubs and supplies to reverse the experiment with warm water over the rock mound and cold water in the cup. They observed, compared and discussed the experiments.

A textbook could have provided an explanation of how mountains affect climate, but this was interactive. This was fun.

Wright is pursuing a master’s degree in applied mathematics at Mines. She is focused on a numerical method for solving Poisson’s Equation for her research project. And she also says she likes doing “nerdy lessons with kids.” Last year, funded by the NSF’s GK-12 Learning Partnerships grant, Wright worked with a middle school science and math teacher. This year, funded by the S.D. Bechtel, Jr. Foundation, she is working with a kindergarten teacher to give children an early introduction to science, technology, engineering and math (STEM).

Kelly Lundstrom is a master’s student in applied statistics. Her research is related to assessment in education, specifically with the Bechtel Initiative, and she works with Mines Professor Barbara Moskal on assessing data from the program. For the past year and a half, she worked in an elementary school classroom where one of her favorite lessons was a raisin race, teaching students that matter exists as solids, liquids and gases and can change from one state to another by heating and cooling. She also co-ran an after-school science club where students completed engineering design projects.  “My favorite part was seeing how excited the students got every time I presented something cool related to STEM,” said Lundstrom.

Funded by grants from the Bechtel Foundation and the National Science Foundation (NSF), kindergarten through eighth grade teachers, Mines faculty and Mines graduate students work together to develop problem-centered, interdisciplinary learning experiences for K-8 students in Adams County District 50, Adams County District 12, Denver Public Schools and Englewood Schools. Mines leads a two-week summer workshop focused on mathematical, scientific and engineering content, as well as instructional techniques, for the teachers and graduate students. Then throughout the following school year, the graduate students provide assistance to the teachers in their classrooms.

“Every week elementary and middle school students interact with Mines students – great role models who like science and math and want to work in a STEM field,” said Moskal, who directs the Trefny Institute and the Center for Assessment of Science, Technology, Engineering and Mathematics at Mines. Her research group examines the effectiveness of existing and new STEM programs and asks: How do you capture the impact of outreach programs on students’ learning and attitudes?

One thing Moskal has learned is students want to see the usefulness of STEM subjects. They are motivated when they realize how STEM can benefit their lives and the lives of others. So practical applications are an important element of Mines’ STEM programs, which also include the Renewable Energy Materials Research Science and Engineering Center (REMRSEC) K-12 Education Outreach.

Supported by the Bechtel Foundation, BNSF Foundation, ECA Foundation, Northrup Grumman, NSF, Shell Oil Company and The Denver Foundation, this program provides Adams County District 50 and other teachers at the summer workshop with age appropriate lesson plans on energy basics, solar energy, hydrogen and energy efficiency. The Engineering Research Center for Re-Inventing the Nation’s Urban Water Infrastructure at Mines also partners with Adams County District 50 to help teachers create compelling lessons and activities for their students during the summer workshop.

The American Society for Engineering Education has honored the Mines programs as “Best K-12 Partnerships” for two consecutive years, and the programs are growing, reaching more teachers and students with increasingly innovative, practical and effective approaches to STEM education. Serving the STEM pipeline from kindergarten to career, Mines is helping the nation build a highly skilled, competitive workforce.

 

Physics for Students with Dyslexia

The Rocky Mountain Camp for Dyslexics is Mines’ newest STEM partner. The American Physical Society will fund “Children with Disabilities: Physics Outreach to Dyslexic Students,” a grant proposed by Moskal and Craig Taylor, REMRSEC director. They will direct the development and delivery of instructional modules in physics for K-6 students. The modules, involving 10 hours of hands-on physics lessons, will be tested on 40 students at the five-week summer camp held in Indian Hills, Colo.

“Dyslexia does not impair students’ scientific and engineering reasoning,” explained Moskal. “In fact, some researchers believe that dyslexic students have enhanced capabilities in science.”

Graduate student Lyndsey Wright has helped in the past with the science unit of the camp. “It is really just a lot of fun,” she said. “It allows me the freedom to do the coolest experiments I can possibly think of with a group of kids who genuinely enjoy and have an aptitude for science.”

By Todd Neff

Forests across the Mountain West have gone orange and faded to gray. Since about the turn of the millennium, the mountain pine beetle’s appetite for lodgepole has killed off some four million acres of trees in Colorado and Wyoming alone. That the larvae of an insect the size of a grain of rice can bring such destruction is in itself a wonder of nature.

The changes go far beyond appearance, and while questions about the effects of so many dead trees on forest fires may be the most obvious, some of the beetles’ biggest impacts lie downstream. Pine beetles are shrinking the snowpack, hastening runoff and parching summer soil. The bugs have affected everything from the molecular habits of soil metals to the makeup of soil microbes. They have changed the chemistry of forest earth and increased the loads of carcinogens flowing through water treatment plants.

It’s more than a provincial concern of cabin dwellers and ski condo owners. Mountain runoff into the Colorado and Platte rivers alone sustains 30 million people and 1.8 million acres of irrigated farmland. With a warming climate, the deep freezes that once killed off pine beetles will be fewer, threatening more frequent, longer lasting epidemics affecting the region in ways science is only beginning to grasp. But science will soon catch up. A Mines-led team of hydrologists, microbiologists, geochemists, numerical modelers and social scientists is sharpening the picture of pine beetle impacts below a given dead tree and connecting how those changes trickle out to watersheds and the people who depend on them.

A five-year, $3 million National Science Foundation grant and $375,000 in Colorado state matching funds are fueling the effort. Mines Associate Professor Reed Maxwell, who specializes in hydrological modeling, serves as principal investigator. His Mines office is big and sparse. Its notable features include a high-end road bike outfitted with commuter lights, a wall clock whose arms at noon point to the cube root of 1728, and a 28-square-foot whiteboard, mostly empty on this day.

“The water quality in, say, Lake Granby has a lot to do with a watershed area that’s heavily beetle impacted,” Maxwell said. “We want to move from tree to plot to hillslope to watershed scale. That’s one of the big tasks in our grant, and we’re developing the models from scratch. They aren’t really out there.”

There are plenty of hypotheses, supported — but also contradicted — by a growing number of studies. Combined, the story goes something like this: Pine beetles kill trees, which drop their needles and load the soil with carbon as they break down. Their denuded branches let more snow into the ground, but they also stop less sunlight and block less wind, accelerating melting and runoff. The water moves through the hillslope and watershed faster. That influences how fast it reacts chemically, which in turn affects carbon balance, metal absorption and microbial makeup. At larger scales, the flow paths and speeds of rivulets, creeks and rivers change, too. The sum of the impacts shifts water quality, quantity and timing to new equilibriums, Maxwell said.

But no one knows for sure, which is why the team of eight faculty, eight graduate students and two postdoctoral researchers from Mines and Colorado State University has much to do.

If recent studies are any indication, the pine beetle plot will have many twists. Mines hydrological engineering PhD student Kristin Mikkelson spent three summers doing field work in Pennsylvania Gulch near Breckenridge and Keystone Gulch, focused on testing surface waters for copper and zinc. Dissolved organic carbon, more abundant with all the fallen pine needles, latches onto metals and keeps them mobile, boosting their soil concentrations and, one would think, the volume of metals flowing in surface waters. But while soil concentrations of metals have indeed been higher, Mikkelson said, “We’re not seeing it in the surface water.”

Another curiosity relates to municipal water quality. In a separate Mikkelson-led study, published in Nature Climate Change in October 2012, she and Mines colleagues reported that higher concentrations of organic carbon from pine needle pulses react with chlorine-based disinfectants in water treatment plants and produce more carcinogenic disinfectant byproducts. The study compared water treatment plants in five pine-beetle-impacted watersheds with four controls and linked increases in disinfectant byproducts with the degree of pine beetle infestation. The surprise, Mikkelson said, was that one class of disinfectant byproducts, known as trihalomethanes, spiked while others, haloacetic acids, didn’t.

“When we saw the jump in only the one, it was clear that the pine beetle epidemic is not only changing the amount of organic carbon, but also its composition,” she said.

Mikkelson is following up with experiments in which she percolates artificial rainwater presoaked with brown pine needles through columns of soil. “We’re measuring how that organic carbon is changing as it goes through the columns — what parts are partitioning and sorbing into the soil and which metals they’re grabbing.”

That effort complements Mines hydrology PhD student Lindsay Bearup’s work. In a Berthoud Hall lab, Bearup pulled a one-gallon Ziploc® bag from a refrigerator. Its dirt would find its way into jars, and then vials.

“I have jars and jars of dirt – really exciting!” she joked.

Bearup had collected it from a site north of Bear Lake in Rocky Mountain National Park. After hiking the eight miles in, she had filled bags of dirt beneath trees in various states of beetle impact – some green and untouched, some orange, some gray. In the lab, she had put single grams of soil into 50 milliliter falcon tubes and added chemicals to determine how organic fractions differed and what metals were present. This information, combined with water captured in a rain gauge (to determine precipitation volume and stable isotopes) and other data, may help explain the surface water metal mystery, among other things.

“I’m looking at where metals are associated with soils,” she said. “It’s interesting because organic matter is changing as trees die.”

Those changes probably affect the microbial communities in forest soils, added Jonathan Sharp, a Mines assistant professor who focuses on the intersection of microbiology, geology and hydrology. With the pine beetle work, Sharp is guiding graduate students as they work to determine microbial makeup in soil based on DNA analysis. The theory is that, as trees die, microbial ecosystems face a pulse of needles and lifeless root systems and will evolve accordingly. That, in turn, could ultimately affect the transport of metals and water quality.

“We’re trying to look from the millimeter scale all the way up to the watershed,” Sharp said.

Maxwell’s modeling work will incorporate the team’s fieldwork, as well as data from partners at the U.S. Geological Survey and the University of Colorado, to bridge these scales. One aim is to put new information in the hands of water managers and policymakers. Part of the project, Maxwell said, will involve partnering with water municipalities in Colorado and southern Nevada to help them understand how pine beetles may be affecting the quality of their inflows and how they might adjust their water treatment regimes.

“We’re seeing real water quality changes,” Maxwell said. “At best, this is going to mean an increase in water bills.”

John McCray, a co-investigator and head of Mines' Department of Civil and Environmental Engineering, says the project’s combination of field work, chemical and DNA analysis, and computer modeling could help answer questions well beyond those posed by the pine beetle.

“The processes we’re looking at really have to do with any sort of change in mountain and forest hydrology,” McCray said. “Those could be changes due to fire, development or climate change.”

It’s good that the work’s happening now, he added. “Pine beetles appear to have significant effects on hydrology and water quality, and we’ve only had a limited window in which to study this.” 

 

This article appears in the 2013-14 edition of Mines' research magazine, "Energy and the Earth."

Pages

Subscribe to RSS - Environment